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ABSTRACT Long time series of monosynaptic la-afferent to alpha-motoneuron reflexes were recorded in the L7 or S1 ventral
roots in the cat. Time series were collected before and after spinalization at T13 during constant amplitude stimulations of group
la muscle afferents in the triceps surae muscle nerves. Using autocorrelation to analyze the linear correlation in the time series
demonstrated oscillations in the decerebrate state (4/4) that were eliminated after spinalization (5/5). Three tests for determinism
were applied to these series: 1) local flow, 2) local dispersion, and 3) nonlinear prediction. These algorithms were validated with
time series generated from known deterministic equations. For each experimental and theoretical time series used, matched
time-series of stochastic surrogate data were generated to serve as mathematical and statistical controis. Two of the time series
collected in the decerebrate state (2/4) demonstrated evidence for deterministic structure. This structure could not be accounted
for by the autocorrelation in the data, and was abolished following spinalization. None of the time series collected in the spinalized
state (0/5) demonstrated evidence of determinism. Although monosynaptic reflex variability is generally stochastic in the

spinalized state, this simple driven system may display deterministic behavior in the decerebrate state.

INTRODUCTION

The recognition that stretch reflexes are extremely variable
is as old as the study of neurophysiology (Sherrington 1906).
Rall and Hunt (1956) differentiated a linearly correlated from
an uncorrelated component of this variability for monosyn-
aptic reflexes. Some efforts have been made to study the
covariance of these reflexes at neighboring spinal cord seg-
ments in decerebrate versus high spinal preparations (Somjen
and Heath 1966). Further work (Rudomin and Dutton 1969)
demonstrated that at least a portion of this variability and its
correlated component may derive from the effects of presyn-
aptic inhibition. Dual intracellular recordings of the time
course of membrane potential fluctuations recorded at base-
line and during excitatory postsynaptic potentials (EPSPs)
were consistent with a strong correlating presynaptic effect
(Rudomin et al. 1975). Correlated modulation of such vari-
ability was postulated to have an important role in the in-
formation processing of simple monosynaptic neuronal cir-
cuits (Rudomin et al. 1975). Study of single fiber Ia EPSP
fluctuations have been carried out under low (Redman and
Walmsley 1983) and high (Solodkin et al. 1991) synaptic
noise levels, and evidence for nonlinear interactions between
synaptic noise and EPSPs have been suggested (Solodkin
et al. 1991).

All of the above studies assumed that the fluctuations were
stochastic (random). We will here examine whether such
fluctuations in monosynaptic reflex variability may in fact
not be entirely stochastic, but display evidence for deter-
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minism (predictability). Many neuronal circuits in the brain
and spinal cord can exhibit predictable (i.e., deterministic)
behavior, such as rhythmic output under some conditions,
that are easily detected by traditional linear signal analysis
(power spectrum or autocorrelation). The present work was
designed to test whether there are additional, more subtle,
deterministic patterns in the neural output (e.g., aperiodic
fluctuations in synaptic drive that nevertheless exhibit pre-
dictability) that are not revealed by conventional signal
analysis. Although the basic monosynaptic reflex arc from
group la afferents to motoneurons is a simple circuit, it is
embedded in a complex system of other networks that subject
Ia afferent terminals and their postsynaptic motoneurons
to varying drive that may include deterministic as well as
stochastic characteristics.

Many “noisy” physical systems have recently yielded un-
expected patterns and insight when powerful new methods
of analyzing complex systems have been applied to them.
Specifically, our ability to differentiate true randomness or
stochastic behavior from the highly erratic but deterministic
behavior of nonlinear chaotic systems is now vastly im-
proved (Ott 1993). Our goal in the present work was to apply
these new methods to analyze the variability in neuronal
population responses. In this paper we give the background
and theory for these methods, and examine monosynaptic
spinal cord reflexes in both the decerebrate and spinalized
state. In a companion paper we examine both driven and
spontaneous activity in the in vitro hippocampal slice.

MATERIALS AND METHODS

Experimental preparation

The methods used in these experiments are fully described elsewhere
(Gossard et al. 1994). Four cats of unselected sex were anesthetized with
halothane and the carotid arteries ligated. A tracheostomy was performed
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and a catheter inserted into one carotid artery to measure blood pressure.
Saline was administered through an intravenous line in a forelimb ce-
phalic vein, and norepinephrine used as needed to keep blood pressure
within physiological limits (> 80 mmHg systolic). A rectal temperature
probe was used to monitor temperature, and both a heating blanket and
infra-red lamp used to maintain body temperature at 37°C. A laminec-
tomy was performed over the lumbar region to expose the cauda equina
and the conus medullaris. The muscles of the left leg were extensively
denervated and the nerves to the medial gastrocnemius, lateral gastrocne-
mius, and posterior biceps and semitendinosus muscles were placed on
fine platinum bipolar electrodes for stimulation. After craniotomy, the
forebrain was removed and a precollicular transection of the midbrain
was performed. A laminectomy was performed at T13 to permit later spi-
(Flaxedil), and the proximal ends of the cut ventral roots of L7 and S1
were placed on bipolar platinum recording clectrodes. The spinal cord
and roots were immersed in warmed mineral oil.

Constant voltage 50 psec square-wave stimuli were applied to single
muscle nerves in the lower extremities at a frequency of 2 Hz. The intensity
of stimulation was adjusted to yield just supra-maximal group I responses
as measured by the cord dorsum potential (recorded with a fine platinum ball
placed on the dorsal root entry zone). We attempted to evoke monosynaptic
reflexes with single stimulus volleys delivered to medial gastrocnemius,
lateral gastrocnemius and soleus, or to posterior biceps-semitendinosus
muscle nerves (Table 1). However, for some of the experiments it was
necessary to use two stimulus volleys to evoke a measurable monosynaptic
reflex (4 msec interval between paired volleys, pairs delivered at 2 Hz);
special attention was given in these cases to eliminate reflex series showing
any detectable response to the first volley. In the spinalized phase of ex-
periment 1, time series in response to single pulse stimulation of both medial
gastrocnemius and posterior biceps-semitendinosus nerves were available
and analyzed (Table 1); the spinalized data therefore reflect 5 data sets from
4 experiments, and are not statistically independent.

Recordings were stored digitally and analyzed with LabView?2 (National
Instruments, Inc., Austin, TX), or Datapac II (Run Technologies, Inc., La-
guna Hills, CA). Implementation of algorithms to test for determinism was
performed with Matlab (The Math Works, Inc., Natick, MA).

In the analysis of these data, time window settings were set to incorporate
the positive deflection of the monosynaptic reflex potential (Figure 1). These
recordings were made from “crushed-end” ventral roots in order to remove
biphasic and triphasic components. Baseline potential recordings just before
the monosynaptic reflex were subtracted to give the absolute voltages re-
corded at the time of the reflex, and the monosynaptic reflex deflections
were integrated during a time window of 1-2 msec. Previous work suggests
that this integrated value is proportional to the number of discharging
neurons in the motoneuron pool (Rall 1955).

TABLE 1 Summary of experiments

Experiment Events Preparation Roots Pulse*
1A 2455 Decerebrate MG/LGS 1
1B 1018 Spinal PBST 1
1C 1118 Spinal MG 1
2A 536 Decerebrate MG/LGS 2
2B 825 Spinal MG/LGS 1
3A 970 Decerebrate MG/LGS 2
3B 1000 Spinal MG/LGS 2
4A 623 Decerebrate MG/LGS 1
4B 1000 Spinal MG/LGS 2

MG, medial gastrocnemius; LGS, lateral gastrocnemius and soleus; PBST,
posterior biceps—semitendinosus.

* Whether the monosynaptic reflex integrated was in response to the first
or second stimulation pulse. Second pulses were used if a pair of stimuli
were required to evoke a monosynaptic reflex, and there were no responses
to the first pulse in any trial (see Gossard et al., 1994).
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Mathematical background

Some very simple systems have extremely complex behaviors. Simple mod-
els of fluid convection (Lorenz 1963) revealed that atmospheric gases may
behave in a complex fashion, explaining in part why weather forecasting is
so imprecise. May (1976) demonstrated how a very simple model of insect
populations may give extraordinarily complicated yearly population mea-
surements. These two theoretical models derived from simple nonlinear
equations (where, for instance, a variable was “squared”), and were fully
deterministic.

Unfortunately, the experimental scientist usually has no access to the
actual underlying equations (rules) that generate the behaviors of an ob-
served system. The experimentalist measures one or more observable vari-
ables, and is then faced with the task of modeling the underlying true system.
For the two examples mentioned above, simple study of the statistical prop-
erties in time, or in frequency (e.g. Fourier analysis), is poorly equipped to
give much insight into the underlying dynamics. As a result, a method to
reconstruct the dynamics of such a system has been developed - time delay
embedding.

Time delay embedding

A physical system that follows a well described set of rules (e.g. differential
equations) may be represented by a graph in a “state” space, where each
coordinate represents an independent variable of the system. Thus, the state
of a rolling marble may be described by a plot of its position and momentum,
or a swinging pendulum may be represented by a plot of its angle and angular
velocity. For dynamical systems whose true variables are unknown, we can
observe one physical measurement over time, creating an experimental time
series. In time delay embedding, one creates additional variables (coordi-
nates) by using previous (delayed) measurements of the time series, and
plots a trajectory in a vector space that we hope will capture some of the
characteristics of the original system’s trajectory in its true state space. We
hope that the number of coordinates we require to represent the dynamics
of the original system in our reconstructed state space correspond well to
the number of variables (degrees of freedom) present in the true system. In
this study, we will use the term embedding dimension to specify the number
of time delay coordinates we are using. It is important to note that high
dimensional systems, even when very deterministic, will appear stochastic
by these methods.The physics of time delay embedding was first explored
by Packard et al (1980) and Takens (1981), while the mathematical foun-
dation extends back to Whitney (1936). An accessible discussion of the
experimental applications of this technique can be found in Moon (1992).
A detailed theoretical analysis of this method is given by Sauer et al (1991).

Determinism

Determinism implies that the trajectory of the state of our system has
predictability—that there are rules that direct, at least to some degree, the
direction and magnitude of the evolution of the trajectory from any given
coordinate. Completely deterministic systems, which are unexpected ex-
perimentally in biological systems, would have fixed rules for knowing
exactly where the system’s state variable will move given an initial set of
coordinates. A perfect reconstruction of these dynamics from delay coor-
dinate embedding would enable us to predict the true system’s trajectory
well. Unfortunately, we anticipate that if biological systems exhibit deter-
ministic dynamics, our measurements will reflect mixtures of dynamical and
additive noise blended with the deterministic elements. This noise will de-
grade the quality of our reconstructed map, and although this will increase
the error in our predictions, our short-term accuracy may still be good. A
“good” prediction is better than a random choice. To test the effectiveness
of prediction, we will compare our predictions with known random choices.
We will do this by constructing families of randomized data based on the
original observations, called “surrogate data”. We then test the surrogate sets
to see how well these control data sets can account for our experimental
predictions.
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CDP

FIGURE 1 Scheme for data analysis from electrical
recordings. Upper trace shows cord dorsum potential
(CDP) in relation to monosynaptic reflex (MSR) from
ventral root (VR) “crushed end.” Crushing the end of
the root, where it rests on one of the bipolar electrode
leads, reduces the triphasic components of the MSR to
a nearly monophasic potential that is readily integrated
without rectification. A section of integrated VR base-
line, equal in time span to the MSR window used for
the integration boundaries, is subtracted from the in-
tegrated MSR to cnsure accurate integrations in the
face of bascline drift.

Local smoothness

Unfortunately, our imperfect trajectory map will fail us if the trajectories for
nearby coordinates are wildly different. When we observe this, the system
will appear stochastic. We therefore need to hope that there is some local
“smoothness” to our rules—i.c., that the rules for neighboring points are
similar. A local smoothness assumption underlies each of the methods we
will employ to test for determinism in this study. Local smoothness, of
course, is also a characteristic of stochastic systems that possess linear cor-
relation; we therefore employ surrogate data with degrees of local smooth-
ness that are similar to our experimental data in order to take this into
account.

Linear systems may of course be predictable, and methods for describing
time series prediction of such systems are well described (Box and Jenkins
1976). Such systems are well characterized by their component frequencies
(power spectrum) or linear correlation (autocorrelation), measurements of
which offer an equivalent and compicte description of lincar systems
(Bendat and Piersol, 1986). In the present work, we will attempt to iden-
tify predictability beyond that accounted for by the spectrum, and this is
the hallmark of nonlinear and potentially chaotic systems. Such systems
may be deterministic, yet display irregular and aperiodic behavior that
can be mistaken for “noise.”

Tests for determinism

Three independent tests for determinism were used in this study because we
have no a priori knowledge regarding which of these methods are best to
use with these types of biological data. As opposed to examining the original
data in time (autocorrelation), or in frequency (Fourier analysis), these meth-
ods examine the behavior of nearby points in the time embedded vector
space. All of these methods deal with patterns of flow of nearby points in
this vector space (one thinks of local eddy currents in turbulent fluid, where
on a small scale nearby fluid flows together). Since the mathematics of these
methods are complex, we have placed all equations in an Appendix. Source
code for the implementation of each method may be found in Schiff et al
(1994).

Local flow

‘We begin with the time delay embedded representation of the data (not the
original data; see Appendix Al). Our first method to test for determinism
is a discrete adaptation (Kaplan 1993) of a technique for continoous systems
(Kaplan and Glass 1992). In the discrete adaptation of this method (Figure
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FIGURE 2 Geometry of the mathematics employed in the three tests for
determinism. (A ) Local flow; (B) local dispersion; (C) nonlinear prediction.
(@) Position of the points in the embedding space, near a given index point
indicated by (O). Dashed open circles indicate the original positions of index
points, before translated into the future for a given translation horizon. The
X is a predicted location for nonlinear prediction (C).

2A), one first selects points in the embedding space that are “nearby”. Using
these as reference points, vectors are calculated to events in the embedding
space at a selected time in the future. We denote the time translation selected
for these points as the translation horizon. These vectors are then normalized
and averaged. Larger average vectors are produced by deterministic rather
than stochastic systems. Although deterministic structure might be observed
for small translation horizons, evidence for determinism will generally be
lost as the translation horizon is increased.
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Local dispersion

A closely related method to test for determinismn examines the consis-
tency with which nearby points (in the embedding space) move with time
(Wayland et al. 1993; sce Appendix A2). If nearby points all tend to
move relatively similar distances in similar directions, that is the variance
or dispersion of the nearby movements is small, this is evidence for de-
terminism (Figure 2B). If the movements are widely dispersed, the proc-
ess may be stochastic.

Nonlinear prediction

For our third method, we choose index points in the embedding space, and
study how the neighbors of those points move with time (sce Appendix A3).
We take an average of the movement of the neighbors, and compare this
prediction with the actual movement of our index points. The difference
between the actual and predicted movement is the error of our prediction
(Figure 2C). This type of nonlincar prediction technique was explored in
detail by Farmer and Sidorowich (1988), and a similar version was applicd
to the dynamics of measles epidemiologic data (Sugihara and May 1990).
To make our analysis as transparent as possible, we employed a relatively
simple implementation of this technique, although more elaborate imple-
mentations exist (Sauer, 1993).

Autocorrelation

Autocorrelation is a function that is a2 measure of the linear correlation
present in a time series (Box and Jenkins 1976). This function calculates
the correlation between points in a time series at various time “lags™ (sce
Appendix A4).

Surrogate data

‘We have comstructed statistical controls from our experimental data to test
the mull hypothesis that our results can be explained by non-deterministic
processes. We in particular want to exclude predictability in our data that
can be well accounted for by linear correlation in time. We have used the
method of surrogate data, where certain aspects of the data are preserved
(e.g. number of data points, mean, standard deviation, autocorrelation), yet
the data are randomized to destroy deterministic strocture that may be
present. If the results of the experimental and surrogate data are similar, then
we cannot reject the null hypothesis that our data are stochastic (for review,
sce Theiler et al. 1992).

For each of our experimental time series, we have constructed 3 separate
realizations of cach type of surrogate data set, and analyzed them in the same
manner as our experimental data. One then tests to see if the experimental
data yields results outside of the distribution of the surrogate data resalts.

The source code for gencrating these different surrogates can be found
in Schiff et al. (1994).

These surrogates are not the only possibilitics. Kaplan and Glass (1993)
have recently demonstrated how creatively constructing surrogates can help

Our use of sarrogate data also provides a safeguard against generating
spurious results due to small data set size. Indeed, we would have preferred
to have very long data sets for these analyses, but the nature of the biological
systems employed limited us. Nevertheless, by matching the size of the
surrogates to the size of the data sets, artifacts related to data set size should
be accounted for.

It is important to note that our surrogate data sets are actually linear
stochastic models of the data. By comparing the surrogate with experimental
results in our tests for determinism, we are specifically seeking to identify
determinism beyond that imparted by the autocorrelation, and by impli-

Phase randomized surrogate

We have used three types of surrogate data. In the first type, phase ran-
domized, we preserve the mean, standard deviation, and autocorrelation of
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our original time series (Theiler et al. 1992). Recall that a Fourier transform
generates a sequence of complex numbers, the amplitudes of which cor-
respond to the power spectrum, and the phases of which are essential to
reconstruct the original time series through an inverse Fourier transform. A
random phase can be added to each complex coefficient of a Fourier trans-
form, and an inverse Fourier transform then generates a new random time
series which has the same mean, standard deviation, and autocorrelation as
the original (for farther details sce Appendix of Schiff 1992). Preserving
ness” as the original time series, and therefore it has the same frequency
content (power spectrum).

Gaussian scaled surrogates

The second type of surrogate is onc where we assume that the data came
from a normally distributed (Ganssian) random process, that was filtered
through a noslinear filter (e.g. synapses, bad amplifiers, etc). In this sur-
rogate the original data values of the experimental time serics are shuffied,
which preserves the amplitude distribution of our data but not the auto-
correlation (the phase randomized surrogate changes the amplitudes of the
data in order to preserve autocorrelation). We call this a Gaussian scaled
surrogate, and it was proposed by Theiler et al. (1992). The surrogate is
created by generating a Gaussian distributed set of random deviates with the
same number of points as the original time serics. These random numbers
are then rank ordered in the rank order of the original time series (rank order
is the sequence of numbers that indicate the relative amplitudes of the
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FIGURE 3 Integrated monosynaptic reflex time series from experiments
1-4. Columns A, B, and C correspond to different time series as detailed in
Table 1. All of the data in column A are from decercbrate preparations,
whereas columns B and C are from spinalized preparations. Two sets of
spinalized data arc shown from cxperiment 1 corresponding to different
reflexes (Table 1). Note the presence of fictive walking during the decer-
cbrate phase of cxperiment 4 (this time series was not convincingly deter-
ministic). Abscissa are event numbers, cach event recorded at 2 Hz. Or-
dinates are arbitrary values proportional to ms*mV.
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elements in a time seties, so that {3, 2, 5} would have a rank order of
{2, 1, 3}). One then gencrates a phase randomized surrogate of this rank
ordered sequence of random numbers, and then rank orders the original time
series in the rank order of this phase randomized surrogate.

Fourier shuffled surrogate

Our third surrogate was constructed to overcome some of the difficulties
encountered with the Gaassian scaled surrogates. We have constructed a
surrogate, again from the original data values of our experimental time
serics, but have tried to approximate as closely as possible the lincar cor-
relation or smoothness as in the original data. The surrogate is created by
generating a phase randomized surrogate of the original time series, and then
rank ordering the original data values in the rank order of this phase ran-
domized surrogate. We call this a Fourier shuffled surrogate.

RESULTS

Nine time series were analyzed from four experiments (Table
1). Figure 3 shows the original experimental time series of
the integrated areas of the monosynaptic reflexes. Figure 4
shows the autocorrelation of each original time series. All
(4/4) of the decerebrate time series demonstrated oscillations
or “seasonality” in the autocorrelation. This reflects rela-
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tively slow oscillatory behavior in the autocorrelation as a
function of time lag shown along the abscissas of Figure 4.
In no time series collected after spinalization (0/5) was this
oscillatory autocorrelation observed.

To validate the determinism algorithms we used (local
flow, local dispersion, and nonlinear prediction), we have
tested them with a chaotic time series generated from a
known deterministic set of equations—the Hénon (1976)
equations (see Appendix A5). Figure 5 shows a chaotic time
series generated from observing 1 variable from the Hénon
equations. This time series appears to be random noise to the
observer, yet it is generated by iterating a set of deterministic
equations, and the complete time series can be “predicted”
(i.e. replicated) by iterating the equations when the initial
conditions are exactly specified. Also shown in Figure 5 are
three matched surrogate data sets for this time series: Fourier
shuffied, phase randomized, and Gaussian scaled. Figure 6
shows the results of each method applied to the Hénon time
series, and the three types of surrogate data. We have gen-
erated three independent realizations for each of the three
types of surrogate data (with different random numbers). As
can be seen, each method is readily capable of picking out

A B C

10 15 0 5

FIGURE 4 Autocorrelation for the time series shown
in Fig. 3. Note the oscillatory behavior of the autocor- 1

relation in the decercbrate preparations (columm A), 0
which is almost entirely climinated in the spinalized data

(columns B and C). Abscissa is time in s. Time lags in

the computations were used in increments of 0.5 s.




the deterministic qualities of this time series by giving dif-
ferent results (diamonds, Figure 6) when compared with
the distribution of the surrogate data results (dashed lines,
Figure 6).

To quantify these results, we use a technique suggested by
Theiler et al (1992), where for each value of the experimental
result plotted along the abscissa, the standard deviation for
the surrogate results is calculated, and the number of standard
deviations, “sigmas”, separating the surrogate mean from
each experimental value are determined. For the Hénon re-
sults in Figure 6, the Null hypothesis that the deterministic
properties of the data can be explained with the properties of
the surrogates can be rejected. We focus on the least sepa-
ration between surrogate and experimental results, because
if any surrogate data can fit the results well, determinism is
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FIGURE 5 Theorctical time serics data gencrated -1 1 i
from the chaotic Hénon equations (see Appendix). The 500 1000
original time scries is shown, as well as phase-
randomized, Gaussian-scaled, and Fourier-shuffled sur-
rogates. Note that the Fouricr-shuffied and Gaussian-
scaled surrogates preserve the original values of the time
serics, whereas the phase-randomized surrogate uses 1
new values (while maintaining the autocorrelation of the
original time serics). Phase
Randomized 0
Surrogate
Series
—1 1 1
500 1000
1 | 1
Gaussian
Scaled
0
Surrogate
Series
-1 1 1

not likely present. For local flow calculations, Fourier
shuffled surrogates (the closest fit) averaged 6.4 sigmas in
separation from experimental values for 10 translation ho-
rizons (translation horizon is the number of discrete time
units that points are translated into the future, see Methods).
For local dispersion, the closest fit averaged 13.1 sigmas in
separation from experimental values over 8 embedding di-
mensions for Fourier shuffled surrogates. For nonlinear pre-
diction, the closest fit averaged 29 sigmas over 10 translation
horizons for Fourier shuffled surrogates.

All of the experimental time series after spinalization (5/5)
failed to demonstrate evidence of determinism, suggesting
that these reflexes fluctuated stochastically. The results of the
local flow, local dispersion, and nonlinear prediction analysis
for a typical spinalized time series, experiment 3B, are shown
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Local Dispersion  Noniinear Prediction

FIGURE 6 Results of local flow,
local dispersion, and nonlinear pre-

diction algorithms on the Hiénon data, -0-50 5‘
compared with three sets of each of
the three types of surrogate data. Dia-
monds (O ) represent the experimen-
tal, and dashed lines (- - - -) represent

the surrogate data results in this and 1
subsequent figures. As can be seen,
cach method is readily capable of de-
showing clear separation from the re-
sults obtained with the surrogate data.
The abscissa arc translation horizons 0
for local flow and nonlinear predic-

(=]
W
1

local dispersion plots. Embedding di- -0-50
mensions are four and cight for local

flow and nonlincar prediction, re-
spectively, and local dispersion trans-

lation horizons are one in this and

subsequent plots.

s
W

Py 1 1

in Figure 7. In this example, the results of the analysis for
3 sets of different types of surrogate data matched to the
original time series were indistinguishable from the original
experimental data.

Half (2/4) of our decerebrate data demonstrated evidence
for determinism that could not be accounted for by our sur-
rogate controls. As in the case of the Hénon equations, not
all of the methods used showed equal sensitivity in identi-
fying determinism in these series. In data from experiment
3A, the local flow and local dispersion methods failed to
identify deterministic structure, yet the nonlinear prediction
method showed a detectable amount of predictability for
short times with all surrogates (Figure 8). The closest fit of
our surrogate data (phase randomized) still averaged 4.8 sig-
mas for the first 8 translation horizons for nonlinear predic-
tion. A more dramatic example is seen in data from experi-
ment 2A. In this time series, deterministic structure was
clearly evident (Figure 9). The best surrogate fit (phase ran-

10 0 5 10 0 10

domized) for local dispersion calculations showed a consis-
tent separation between the surrogate and experimental data
(Figure 9), averaging 2.0 sigmas of separation for the first 8
embedding dimensions. Nonlinear prediction showed clear
separation between experimental data and controls, averag-
ing 14.0 sigmas of separation for the first 20 translation ho-
rizons for the best surrogate fit (Gaussian scaled, Figure 9).

DISCUSSION

These results suggest that monosynaptic reflex variability at
the group Ia to alpha-motoneuron synaptic junction may be
partially deterministic in the decerebrate state. It is important
to note that this determinism is over and above the effects of
the obvious periodicity present in the autocorrelations illus-
trated in Figure 4. Our analysis was designed to separate
predictability that could be explained by a simple linear proc-
ess, from predictability that would require a more complex
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diction algorithms for data from the Pt
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model to explain (e.g. nonlinear, perhaps chaotic). Following
spinalization, both the oscillatory autocorrelation and the
deterministic structure were lost.

The present work reports analyses of experimental
records that were part of a broader study of the origins of
monosynaptic reflex variability that is reported elsewhere
(Gossard et al., 1994). The results of that study provide
evidence that the variability of group Ia monosynaptic re-
flexes arises from both presynaptic and postsynaptic sources,
with predominance of the latter. Synaptic drive from com-
mon sources, primarily spinal interneurons, onto many group
Ia synaptic terminals and motoneurons of the responding
motor pool are responsible for correlated fluctuations of mo-
toneuron excitability during monosynaptic reflexes. In ad-
dition, there is evidence that some sources of postsynaptic
drive to pool motoneurons are not homogeneously distrib-
sources produce fluctuations of excitability only in certain
subpopulations of pool motoneurons and thus are not cor-

related with the excitability fluctuations in the overall popu-
lation response (Rall and Hunt, 1956). The available evi-
dence suggests that some “uncorrelated” sources of
variability may be randomly distributed among pool mo-
toneurosns, resulting in what can be regarded as stochastic
“poise” in the population responses. However, other sources
appear to affect subpopulations of sufficient size as to pro-
duce systematic changes in the identities of responding mo-
toneurons at any given level of overall population response
(Gossard et al., 1994). Intrinsic sources of variability such as
fluctuations of transmitter release at individual synaptic ter-
minations and stochastic behavior of neuronal membrane
channels are inherently uncorrelated and would not be ex-
pected to produce substantial population variance, given the
very large number and small magnitude of such effects. We
speculate that the strong oscillatory autocorrelations ob-
served in the decerebrate state may reflect the activity of
supraspinal structures acting on the central rhythm generator
of the spinal cord (Grillner 1981).
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FIGURE 8 Resulits of local flow, lo-
algorithms for data from the decerebrate
phase of experiment 3 A. Evidence for
determinism is seen only for nonlinear
prediction and is not apparent for the
other methods.

Phase 03
Randomized

05
Scaled

If neuronal population information processing on an el-
emental level was deterministic, one would anticipate that by
increasing the isolation of the reflex circuit with spinaliza-
tion, the degree of determinism observed would increase. We
found no evidence for this; only when the monosynaptic
reflexes were incorporated into a larger scale neuronal
network (decerebrate), was some degree of determinism
observed.

‘We made no effort to adjust the amplitude of stimulation
to standardize the mean values of the monosynaptic reflexes
(Rudomin and Dutton 1969). For the predictability we were
testing for, the surrogate data controls should have prevented
spurious deterministic results due to this effect. As in pre-
vious work, we have assumed that stimulation maximal for
group I fibers produces a constant level of group Ia input to
the system (Rudomin et al. 1975).

We recognize that we have used a fairly low frequency of
periodic stimulation to strobe our system. Dynamical be-

havior occurring on time scales much faster than our stimu-
lation would be difficult to capture with our embedding
method. Although one approach is to use higher rates of
stimulation, there is a rapid decrease in monosynaptic reflex
amplitude as frequencies approach 50 Hz (Lloyd and Wilson
1957). Nevertheless, it appears that different stimulation fre-
quencies can effect the recruitment order of motoneurons
(Gossard et al 1994), and whether such frequency effects
may also alter the deterministic qualities of monosynaptic
reflexes is unknown at present.

Our finding of deterministic (and presumably chaotic)
structure in some, but not all, of the decerebrate preparations
begs the answers to a host of questions which we are ill
equipped to provide. We do not know what induced this
system in half of our decerebrate preparations to display de-
terministic behavior. We have not attempted to estimate the
apparent number of degrees of freedom present for these
chaotic examples. We have used no noise reduction scheme
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Nonlinear Prediction

Local Dispersion

FIGURE 9 Results of local flow, lo-
algorithms for data from the decerebrate
phase of experiment 2A. Here, local dis-
noalinear prediction is strongly positive
for determinism.

on these data, and it is possible that a suitable noise reduction
method, especially when used on the reconstructed coordi-
nates (Broomhead and King 1986, Kostelich and Yorke
1990, Sauer 1992), might reveal some degree of determinism
in our other time series. In addition, we are aware of the
possible artifacts that can be induced in an analysis such as
ours from data with long coherence times (Theiler et al.
1993).

Although we have used three independent tests for deter-
minism in this study, these tests do not appear equivalent in
their sensitivity to detect determinism. We have recently
completed a detailed theoretical comparison of these meth-
ods, and confirmed that the relative sensitivities implied by
our results (Figures 8 and 9) can be replicated using theo-
retical data sets with additive noise (Chang et al. 1994). We
recognize that the use of different parameters (e.g. embed-
ding dimension) and averaging techniques employed by each

method makes a direct comparison difficult. Nevertheless,
such a comparison still serves to illustrate the relative power
of each algorithm to pick up determinism in the presence of
noise.

Two of the obvious problems in the attempted application
of chaos theory to the nervous system have been the lack of
mathematical controls, and the application of these ideas to
excessively complex systems. Recall that the equations used
to generate visually complex and attractive patterns (such as
the Hénon equations), are in reality extremely simple non-
linear equations. We have attempted to deal with these issues
by using the most rigorous controls available through our
surrogate data sets, and by restricting our attention to one of
the simplest of known mammalian neuronal circuits. Nev-
ertheless, our analysis relied upon relatively few surrogate
trials, and the assumption that their distribution was Gaus-
sian. Our statistics would have been improved by using ad-
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ditional surrogates, but the computational demands rapidly
become excessive.

There are known clinical correlations for reflex variability.
In the modern form of spasticity surgery known as selective
dorsal rhizotomy, reflex measurements are employed in or-
der to select dorsal rootlets for section. It has recently been
shown that reflex variability affects the performance of such
surgery (Weiss and Schiff 1993), and further clarification of
this issue has recently been provided using an animal model
(Rivera et al. 1994). Unfortunately, the reflex measurements
made during clinical spasticity surgery are polysynaptic, and
the data both sparse and contaminated by measurement noise
(see, e.g., Weiss and Schiff 1993). The type of analysis per-
formed here on monosynaptic reflexes recorded in a labo-
ratory setting may reveal processes that underlie clinical phe-
nomena, but making direct correlations between these
laboratory and clinical findings would be inappropriate at
this time.

There are several reasons why finding evidence of deter-
minism in neuronal circuits such as this is important. Fore-
most is that whether these circuits operate stochastically or
deterministically must be a fundamental feature of any model
that can explain how this region of the central nervous system
actually processes information. In addition, a realistic model
must take into account under what conditions such neuronal
circuits might switch between stochastic and deterministic
behavior.

Another issue is control. With the theoretical prediction
that chaotic physical systems might be readily controllable
with small perturbations (Ott et al. 1990; Shinbrot et al.
1993), there has been rapid and successful application of this
technique to mechanical systems (Ditto et al. 1990), lasers
(Roy et al. 1992), and cardiac tissue (Garfinkel et al. 1992).
What is predictable is in principle controllable. Whether the
nervous system uses some variant of these methods to control
simple fluctuating neuronal circuits, or whether one might
intervene experimentally to effect a degree of control over

such circuitry, are both intriguing speculations.
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APPENDIX

A1: Local flow

From Kaplan (1993), for a discrete time series, s; (i = 1, 2,---,N), we
construct a time delay coordinate embedding based on an embedding
dimension E, and a time delay L

iq = (Sq, sq+|_1 T, q+u‘5-l)) (1)
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forg=1,2,---, N-L. The embedding space is covered with a grid or mesh
of165a:bm1henumberofpointsinuchcubejisnj,andtheinimeindios
axetuwhemk= l,L---,rL,.FmagivenmhﬁonhoﬁmH,thechange
in state from time £, to £, +H for each of the n; points in the cube j is

Ax, =x(t, + H) — x(t,)

fork = l,2,...,ni. Since points near the edge of the cloud of points will
lnveadirecﬁomlbiastowardsthemiddleofthedond,Axuismappedonm
a sine function as

A%, = (sin(zth—"‘ e Hi_ ] )

Sin(hx[tj_,+H+L:—x[tu+L])"”’

. ( x[t-.k+H+(E-1)L]-x{tu+(E—1)L]))
sin| 27w x »

where A is a characteristic length of the embedded attractor; this sine map-
ping was not a feature of the original continuous implementation of this
method (Kaplan and Glass 1992). In our computations, we have used the
maximum amplitude of the time series as the value of A.

An averaged vector, | v, |, arises from cube j, where the number of vectors
passing through the cube is n; for n = 2. For different values of n and E these
averaged vectors form a family of values LE. These values are averaged over

all values of n as
_ [ —cin
V‘< 1= cin >

where < > denotes average over all n. c/n' is the expectation value of
LE if the process were random. A more complete discussion of the derivation
of ¢ can be found in Kaplan and Glass (1992).

For the calculations presented in the text, we chose an embedding di-
mension E = 4, and mesh grain of 16F cubes. Memory constraints became

A2: Local dispersion

From Wayland et al. (1993), let x, be defined as above, and let x,, - - -, x,
be the k nearest neighbors of x,, an arbitrary value of x,. If we translate these
nearest neighbors by a certain horizon, H, into the future, y,, - - -, y, are the
k nearest “images” of the index point x, and its k nearest neighbors. The
error, v, produced between the images and original points is

Vi=Y T X

The average error is

1 k
W=z

=0

and the translation error is defined as

-l $l-OF

k15 [P

where | || indicates the length of the enclosed vector. €, is essentially the
variance of the errors v. N points are randomly chosen from the embedded
attractor, and the median value of € is found.

For the calculations in the text, we chose a translation horizon, H, of 1,
and 2% of the number of elements in the time series for the number of nearest
neighbors, k.

A3: Nonlinear prediction

For an embedded time series, x, as above, again choose k nearest neighbors
of a given index point x,. The k nearest neighbors are translated by the
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borizon, H, and their average translation is now

0 == 5w

which can be viewed as a zero-order (constant) prediction of the translation
of x, by H time units.
The prediction error for the index point is
€om = 100 — )1,
and the error of predicting the mean of the time serics is

M, = |xo,5 — mean(x)l,

where | | indicates absolute value.
The normalized prediction error, NPE, is

(€ )
rms(em,,,)
where rms denotes root mean square.

For the calculations in the text, we chose an embedding dimension of 8,
and 2% of the number of clements in the time series for the number of nearest
neighbors, k.

NPE =

AA4: Autocorrelation

The autocorrelation (Box and Jenkins, 1976, Bendat and Piersol, 1986),
W(L), is defined as

2ot — O — ()

Ta-@F
where L is the time delay and (x) denotes the mean value of x. The time
series, afier removal of the mean value, is shified by a time lag, L, and the

correspoading values of the shified and original time series are multiphied
and summed. These multiplications are normalized by the som of the square

of the error, (x; — (x))’. This is repeated for all time lags of interest, and a
family of values, W(L), is generated.
AS5: Hénon equations
The Hénon (1976) map is defined by the following equations
Xy =1-Ax+y, Ya+1 = Bx,.
In the simulations, we have used A = 1.4, and B = 0.3.

Y(L) =
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